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Galerkin Approximations of Abstract 
Parabolic Boundary Value Problems 

With Rough Boundary Data-Lu Theory * 

By I. Lasiecka 

Abstract. Galerkin approximations of an abstract parabolic boundary value problem with 
"rough" boundary data are considered. The optimal rates of convergence in Lp [O T; L2 (0)] 
norms for L,,[OT; L2(F)] boundary terms are derived. 

1. Introduction. Let Q be an open, bounded domain in R' with smooth boundary 
F. As a motivation for the present paper, let us consider the following two canonical 
examples of parabolic problems with "rough" boundary data: 

(Yt(t) =Ay in Q Q X [0, T], 

(1.1 .D) 4 y(0) 0, 
(y Ir u G LP[OT; L2(F)] 

and 

(yt(t)= (A - 1) in Q. 

(1 1 .N) / Y(0) = ? 
(yN j 2I= uE LP [OT; H-1(F)] 1 E p < x 

Our interest is a study of the rates of convergence of Galerkin approximations to 
(1.1.D), (1.I.N) in the Lp(OT; L2(0))-norms, with boundary data either in 

Lp(OT; L2(F)) (Dirichlet case) or else in Lp(OT; H-'(F)) (Neumann case). 
A standard technique of treating nonhomogeneous boundary conditions consists 

in subtracting the effect of the boundary term and then considering the correspond- 
ing nonhomogeneous equation with homogeneous boundary conditions (see [5]). 
Application of these techniques requires, however, a certain smoothness of the 
boundary function (at least H'/2(F) for the Dirichlet case). This requirement is 
needed to carry over standard variational arguments based on Hl-coercivity of the 
bilinear form associated with the differential operator A. Thus, our assumption that 
u is only in Lp(OT; L2(F)) (resp. Lp(OT; H-'(F))) in the Dirichlet case (resp. 
Neumann case) is the distinctive feature of this work. 
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56 I. LASIECKA 

We shall construct a Galerkin approximation of (1.1.D) and (1.1.N) which will 
yield the optimal rates of convergence equal to dl(4h ) measured in the 

Lp(OT; L2(i2))-topology for 1 < p < x, with Lp[OT; L2(F)]-boundary terms in 
(1.1.D) (resp. Lp(OT; H-'(F))-boundary terms in (L.L.N)). In the limit case, when 
p = 1 or p = x, the corresponding optimal rates of convergence are proved to be 
O(9(jIlnh). 

The approach taken in this paper is based on semigroup theory combined with the 
theory of singular integrals. 

We shall first consider a general abstract model of the form: 

(1.2) Yt(t) =-Ay(t) + AQBu(t);** O < Q < on (D(A*))', 
ty(0) = O 

where -A is the generator of an analytic semigroup S(t) on a Hilbert space H and B 
is a bounded operator from another Hilbert space U into H. D(A*)' stands for the 
dual space to D(A*) with respect to L2(Q), equipped with the graph topology. 

Model (1.2) is suitable to treat nonhomogeneous boundary problems with "rough" 
boundary data, and in particular it covers as a special case the two canonical 
examples given by (1.1.D) and (1.1.N), as illustrated below. 

Dirichlet Case. Here, in order to represent (1.1.D) in the form (1.2), we introduce 
the operator A: L2(0) -- L2(2) defined by 

(1.3) -Ay = Ay, y E 9(A) Ho(R) n H 

It is well known that -A generates an analytic semigroup S(t) on L2(Q). Next, let 
us define the "Dirichlet" map D: L2(F) -- L2(2) to be just a harmonic extension of 
the boundary data g, i.e., Dg = v if and only if 

(1.4) Av=O one2, vlr=g onF. 

An abstract version of problem (1.1.D) is given by the following semigroup formula 

(see, e.g., [2], [11]) 

(1.5) y(t) = Aj S(t - z)Du(z) dz on L2(Q) 

Knowing that D E= YS(L2(F) -- H1/2(g2)) [15] and that H1/2(Q) C 9(A1/4-e), 
?> 0, [6] we have 

(1.6) A/4eD e (L2( F) -L2()). 

After setting H L2(2); U L2(P); B = A1l4-D; Q = 3/4 + E, we can rewrite 
(1.5) in differential form as 

(1.7) {y1(t) = -Ay(t) + ADu(t) = -Ay + AQBu, 

Y(O) = 0 on 9(A*) . 

Thus, (1.7) (a special case of (1.2)) can be interpreted as an abstract version of 
(1.1.D). 

* *Without loss of generality we assume that the spectrum of -A lies in the left complex plane, hence 
the fractional powers AQ are well defined. 
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Neumann Case. To treat Neumann boundary conditions, we proceed in a similar 
fashion. With -Ay Ay - y defined on 

-9(sl) {y E- L2 (E) A Y E- L2 (W2; aY/l71 I r = ?} 

we associate the corresponding semigroup S(t) and we define the "Neumann map" 
N: L2(F) -- L2(0) by Ng = v, where 

(1.8) (A-1)v=O onQ, of g on. 

Since [15] N E Y(H-'(F) - H ) 9 (A'/4) [6], with H L2(E2), U= 

H-(F), we have 

B -A1/4N EY (U - H). 

The solution y of (1.1.N) can now be written as (e.g. [11]) 

(1.9) {y(t) = -Ay(t) + ANu(t) = -Ay(t) + AQBu(t), 

Y()= 0, 

where Q = 3/4. 
Thus, here again, (1.9) is an abstract version of the boundary problem (1.1.N). The 

same procedure described above applies to an arbitrary elliptic operator (see Section 
5). We are here justified in viewing (1.2) as an abstract model for an arbitrary 
parabolic boundary value problem with nonhomogeneous boundary conditions, 
after giving an appropriate meaning to the operators A and B. 

For the abstract model we shall now define Galerkin approximations and we shall 
establish the optimal rates of convergence of the approximate solutions. These 
abstract results will then be applied to the original parabolic problem. 

A brief description of our general setting for Galerkin approximations to model 
(1.2) follows. We introduce a suitably chosen family of finite-dimensional approxi- 
mating subspaces Vh c 9(B*A*Q), as well as a sequence of finite-dimensional 
operators Ah: Vh -- Vh approximating (in the sense described later) the generator A. 

As Galerkin approximation of the abstract model (1.2) we then take: 
Find Yh(t) C Vh such that 

(1.lo) 
t (Yh(t), Vh) H (Ahyh(t), Vh) H + (u(t), B*A*Qvh)U, 

0 Yh(0) = 0 for all vh E Vh. 

By crucially using the analyticity of the original semigroup S(t), as well as the 
uniform analyticity of the underlined Galerkin approximation Sh(t) = eAht, we shall 
prove that Galerkin approximations to (1.2) yield the optimal rates of convergence 
(optimal with respect to the maximal regularity of the solutions). The main tools 
used at this stage are: (i) the theory of singular integrals combined with interpolation 
theory and (ii) estimates for initial value problems with "rough" data. The latter 
follow from the above-mentioned uniform analyticity of Sh(t). 

We now specialize the above procedure to our two canonical examples. In the 
Dirichlet case (1.1.D), we can take as space Vh the space Vh? of linear splines 
vanishing on the boundary F and as approximation Ah the standard Galerkin 
approximation of A. Thus, the version of (1.10) for the special case of Dirichlet data, 
i.e., the Galerkin approximation of (1.7), will take the form 

(1.11) ('h(t), Vh)Q = -(vyh(t),vvh)Q - (u(t), D*A*Vh)rF Vh E Vh0. 
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Using D*A* = Iva I r ([2], [12]), we see that (1.11) is equivalent to 

(1.11') (Yh(t),vh)5 = -(Vyh(t),vVh)- (u(t) aV*)q V h E Vh0. 

The convergence result obtained for the abstract model (1.10) will yield in this 
Dirichlet case the following result: 

With y (resp. Yh) the solution to (1.1.D) (resp. (1.11')), we shall prove that 

(1 Y - h IL [OT; L2()] $ Ch 2I UIL[OT* L2(r), 1 < p < x, 

(.I Y -1)h IYL[OT; L2 ()] Ch2 In hli u IL [OT;L2()P = 100. 

To treat Neumann boundary conditions, we can take for the approximating sub- 
space Vh the space of linear splines with no requirements of vanishing on the 
boundary and for Ah the standard Galerkin approximation of A. The version of the 
Galerkin approximation (1.10) in the Neumann case will then be 

(1.13) (5h(t), Vh) 
- (vyh(t),vuh)Q - (u(t), N*A*Vh)r, Vh E Vh, 

kYh (0) = 0. 

Since N *A *v = v I r, we have 

(1 13') (Yh(t), Vh)r = (vyh(t),vvh) - (u(t), Vh)r, Vh e Vh, 
(1.13') 

Yh (0) = 0. 

With y (resp. Yh) the solution to (1.1.N) (resp. (1.13')), we will prove the following 
rates of convergence, 

1 1 Yh YLP[OT; L2A)] < Ch7 I | UlLP[OT; H-1(r)] 1 < p < 00, 

(1.14) 
- Y YhlLp[OT;L2(0)] < Ch7 lnhluIL [OT;H-1(r)] P = 1,00. 

Remarks. 1. The convergence results with "rough" data obtained in (1.12) and 
(1.14) are optimal. They reflect, in fact, the maximal regularity of the continuous 
solutions, and they are of the same order as the "best approximation" to y(t). 

2. If one considers smoother boundary data, then one would expect to obtain 
higher than /h rates of convergence. In fact, for the Neumann problem this is 
indeed the case. One can show that the algorithm (1.13'), when applied to smooth u, 
will yield the optimal (with respect to the optimal regularity of the solutions y) rates 
of convergence. In contrast, in the Dirichlet case, the algorithm (1.11) limits its 
accuracy to Vh , no matter how smooth the boundary data "u " are. This is because 
in the Dirichlet case the approximating elements are forced to approximate (in some 
sense) the generator A, hence they satisfy zero (or more generally nearly zero) 
boundary conditions. This fact makes it impossible to achieve higher order of 
accuracy (higher than Ch ) for the approximations of the solutions to (1.1.D) with 
nonhomogeneous boundary data. 

The outline of the paper is as follows: Section 2 deals with the abstract model 
(1.2) and provides the maximal regularity results for the original solutions. In 
Section 3, Galerkin approximations of the abstract problem (1.2) are introduced and 
the main abstract convergence results are formulated. Section 4 is devoted to the 
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proofs of the results of Section 3. Section 5 deals with the application of the abstract 
results to the parabolic problem (1.1), where it provides the optimal rates of 
convergence for the approximation of (1.1), expressed in terms of Lp(L2)-norms. 

Notation. X' is the dual of X. 
11 * 11 HH = norm in ?9(H -* H). 
xii, (, ) are the norm and scalar product in L2(Q). 

I 1, , ) are the norm and scalar product in L2(F). 

*Il * Iare the norms in HS(9) and HS(F), respectively. 
K(A) is the Fourier transform on K(t). 

2. Abstract Parabolic Boundary Value Problem. Let A be the generator of an 
analytic semigroup S(t) on a Banach space H. It is well known (see [17]) that there 
exist constants a, b > 0 and C > 0 such that for the resolvent set p(A) of A one has 

p(A) :D {X; ReA > a - bImIAI) 

and for all A E L the resolvent operator (AI - A)-1 of A satisfies 

(2.1) j|R(A, A) IIH.H < C(i + IAI)-, 
or equivalently, 

(2.1 ) ~~II AnS(t) IIj, PH e tat; t > O.*** 

Without loss of generality we may assume that a < 0, so 0 E p(A), and fractional 
powers AQ, 0 E Q < 1, are well defined. We shall consider the following abstract 
model: 

(2.2) ( (t) = -Ay(t) + AQBu(t), (2.2) 
y(~O) = 0, 

where B E- Y(U -* H), with U another Banach space. 
Remark. Since .9(AQB) (considered on H) may be empty, Eq. (2.2) should be 

understood in a sense of (9(A*))'-topology. Analyticity of the semigroup S(t) will 
guarantee that for any u E Lp[OT; U] there exists a solution y(t) defined a.e. for 
t E [0, T ]. More precisely, let 

L: L24OT; U] L2[OT; H] 

be defined as 

(Lu)(t)- 'S(t-T)AQBu() dT. 

Clearly, L is densely defined as H1[OT; U] C ?9(L). Moreover, the following result 
holds. 

THEOREM 2.1. Let 0 < Q < 1. Then 
(i) L E .2(L,,,[OT; U] BMO[OT; 9(A'-Q)]),t 
(ii) L E Y(LJOT; U] L1[OT; .(A1-Q)]),t 

(iii) L e Y(Lp[OT; U] Lp[OT; 2(A1-Q-e)]), p = 1, oo, E > 0. 

* * * C stands for a generic constant. 
*For the definition of BMO (bounded mean oscillations) and L1* (LI-weak) spaces we refer to [15], [8] 

and [18]. 
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Interpolating between BMO[OT; 9(A'-Q)] and L'*[OT; ?i(A1-Q)] (see [18]) we 
obtain 

COROLLARY 2.2. 

(2.3) L c (Lp[OT; UI LP[OT; 9(A1lQ)]), 1 < p < 00. 

Remark. The result stated in Corollary 2.2 was proved in [20] and [4] in the case 
when H is a Hilbert space [4] or H is a reflexive Banach space [20]. Our proof, 
although similar in spirit to [20] and [4], is, however, more general and technically 
different. Also, elements of this proof will be used later in treating approximation 
problems. 

Proof of Theorem 2.1. In order to prove Theorem 2.1 we shall need some results 
from the theory of singular integrals. For the convenience of the reader we shall state 
them below. 

THEOREM 2.3. (S. SPANNE-E. STEIN [22]). Let Tf = K * f where (K * f)(t) 

f?o K(t - ) f ( X) dTr and K e ?P(U -* L1[R, H]) satisfies the following properties: 
There exists a constant M > 0 (independent of IIK IIu , LI[R, H]) such that 

(2.4) IK(X)u=H MIuIU, A=f, E R, 

(2.5) J IIK(x-y)-K(x) IIju.dx < M Vy * O ER. 
1xi> 21vy 

Then T maps L' (R; U) into BMO(R; H), and the following inequality holds, 

I Tf BMO(R; H) < CMI f IL(R;U), 

where CM does not depend on IIKlIU . L1[R; HJ. 

Remark. Theorem 2.3 was originally proved in [21] under the assumption that 
H = Rn. Analysis of the proof in [21] reveals, however, that the generalization of the 
result to vector-valued functions represents no extra difficulties. 

In order to apply Theorem 2.3 to our situation, we define 

(2.6) K6(t) AS(t)B, t > 83 

It can be easily verified that for all u E LJOT; U] and extended by zero outside 
[0, T], we have 

(T6u)(t) f K6(t - T)U(T)d =| AS(t - T)Bu(T) dT 
-00 

and 

(2.7) Tu -A1 - QLu in C [OT; H ] for all u e H1 [OT; U]. 

Also, for each 8 > 0, the kernel Ka(t) E Y(U -* LJ[R; H)). This follows from the 
analyticity of the semigroup S(t), which, in particular, implies that AS(t): H -* H 
is bounded for all t > 8, and from the fact that IAS(t)XIH-,H <s Ce-wt for t large, 
w> 0 (since we assume without loss of generality that a in the definition of z is 
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negative).tt Now we shall verify assumptions (2.4) and (2.5). As for (2.4), we have 

R8(1)u = f__ e-'"K(t)udt = j e-'OAS(t)Budt. 

From the analyticity of the semigroup, it follows that we can shift the path of 
integration from the positive real axis to a ray te'f starting at the origin. If ,B > 0 we 
choose < 0 and obtain 

KR8(1)u = -e'O8S(8)Bu + i13j e-'O'S(t)Budt 

= -e-e'8S(8)Bu + i13j e-it CS ?'Sin S(teiO)Buei dt. 

Hence, 

+ ,t8 sin -0 

ItA(I3)uIHU C[Iuu+I3e 8 lulu < Culu. 

For ,B < 0 we choose the ray of integration with 4 > 0 and obtain a similar estimate. 
Therefore, 

(2.8) |K6(f) |U-4H < M uniformly in 8 > 0. 

Next, we shall show that (2.5) is verified for Ka(t). To this end, let us write with 
y > O. 

11 K(x - y) - K8(x) 11 u1dx = 
I.xI>2.v 

(T J I(AS(x - y) - AS(x))BIIu Hdx, y > 8, 

J1+8 IIA S(x) B 11 u_ H dx + I 11 (AS(x - y) - A S(x)) B 11 dx, 

8/2 < y < 8, 

f+18 IIA S(x) B 11 u_ H dx + f I(AS(x - y) - AS(x)) B II Hdx, 

O < y < 8/2. 

As for the term (, we shall use 

I: II(AS(x -y)-AS(x))f IIH-udx < 1 A 2 S()f dT IH 

s2<J sup J A2S(T)fdT dx 
2y f eD(A 2) XH 

If I11= 1 

" Regularity of the map L clearly will not be affected by translating the spectrum of A to the left of the 
complex plane. 
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(by (2.1') applied with n = 2) 

< C1 sup J If IHdTddx < Cf 1 dxx I n2. 

IfIH=l 

The same line of arguments applies to the second integrals in the terms (2) and (. 
As for the first integral in T and ?, we simply use (2.1') with n = 1. Repeating 
the same estimates with y < 0 yields 

(2.9) f IKa(x -y) - K8(x) ju~ddx < M uniformlyinS. 
lxi >-2 

In view of Theorem 2.3, (2.8) and (2.9), we have 

(2.10) IT8UIBMO(RH) < CIUI -(R U) uniformly in S. 

(2.7), (2.10) and standard density argument yield 

A- QLu IBMO(O, T; H) < CIU IL[OT;U] 

which completes part (i) of Theorem 2.1. 
As for part (ii), we shall use the Theorem of Schwartz, which can be stated as 

follows: 

THEOREM 2.4. [21]. With Tf = K * f as in Theorem 2.3, assume that (2.4) is 
satisfied. Moreover, assume that there exist a real number a > 1 and a constant 
M < ox such that for all tu > O 

(2.11) J | K(I (x-yY -K(lx) | Adx < M 

for all IyI < 1/a. 
Then T: L1[R; U] -- L*[R, H] and 

(2.12) ITfIL*[R, HI <1 aIf ILI[RUp 

In view of (2.12), to prove part (ii) of Theorem 2.1, it is enough to verify (2.11) 
with Ka(t), where M should be independent on 8. To accomplish this, we shall use 
Corollary 5 in [21]. According to this corollary the sufficient condition for (2.11) to 
hold is 

(2.11') Klla ,||x6()| Wdx < a 
J t ax M- 

To check (2.11'), it suffices to write 

| 0. 11 A2S(x)Bllu0dx ay > 8 

C 3~K' W dx = 
I>atL ax U) H [0 ||A2S(x)BI|uHdx, ai <8. 

To estimate T and ?, we shall use analyticity of the semigroup S(t). In fact, 

(D <C| c I 
A <., 

C 
< 

C 
for any a >1. 

A X 2 aL A~ 
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Similarly, 

(y?) C -dx <-< 
S X2 8 

Thus, (2.11'), and consequently (2.11), are satisfied. From Theorem 2.4 we now 

obtain 

(2.13) ITaf ILr*[R H] < CIIf IL[R;UI uniformly in 8 > 0. 

Equation (2.13) together with (2.7) imply that 

A'-QLu ILr*[OT; H] < Cl U 1L[OT; U]' 

which completes the proof of part (ii) of Theorem 2.1. Proof of part (iii) is 

straightforward. In fact, 

l(A1-Q-ELu)(t) H = j Al-ES(t - T)Bu(T) dTH 

(by (2.1') applied with n = 1 - 

<1 C T ( 

I 
dT IUI |L,[OT;, UI '< CTI U I L,,[OT; U]' 

Similarly, for p = 1 we have 

f oA1Q-ELu(t) JHdt CfT | ( U(T) IludTdt 

(changing the order of integration) 

(T fT 1 <1 C TI| ( ,, dt|u(T) |udT <, CT1U1L1[OT;UI] 

The proof of Theorem 2.1 is thus completed. E 

3. Galerkin Approximation of an Abstract Boundary Value Problem. Let 0 < h < 1, 

h -O 0 be a parameter of discretization. Let Vh c .(B*A*Q) be a family of finite-di- 

mensional subspaces of H. We shall assume that the subspaces Vh enjoy the 

following approximation properties. There exists a constant m > 0 such that 

(3.0) IX - PhXIH < ChmaIXID(Aa), 0 <a 1, 

where Ph stands for the orthogonal projection of H onto Vh, 

(3.1) IB*A*Q(I - Ph)xIu < Chm(l Q)IXID(A*) 

for some Q Q. 

(3.1') IB*A*Q(I- Ph)xIH < Ch M(aQ)IXID(A~G) for Q < a < 1, 

(3.2) B *A*QVh |u < Ch MQI Vh IH (inverse approximation property). 

Remark. Since B E Y(U -- H), properties (3.1) and (3.2) follow from 

(3.1") j( - Ph)XID(A*Q) < Chm(1Q)IXID(A*), 

(3.2") I Vh ID(A*Q) < Ch MI Vh IH 
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In the special case when A represents a differential operator of order m and such 
that for x e D(A) we have IXID(A) IIXIIm, then the properties (3.0), (3.1), (3.1") 
and (3.2") (with Q = Q) are the standard approximation requirements satisfied by 
the spaces of splines defined on uniform meshes. Consequently, (3.0)-(3.2) with 
Q = Q are the weaker versions of the standard approximation properties, weaker in 
the sense that (3.1") and (3.2") require a priori that Vh c D(A*Q), while (3.1) and 
(3.2) require only that Vh c D(B*A*Q). This fact will be crucially used in Section 5, 
where our general theory is applied to a parabolic boundary value problem. As we 
shall see, when working with linear splines, we shall have Vh c D(B*A*Q) but not in 
D(A*Q). 

The generator A will be approximated by the sequence of finite-dimensional 
operators Ah: Vh * Vh satisfying the following properties: 

(3.3) I(A-1 - A-')RhxJH Chm'j x j (convergence); 

with Sh(t) = eAht', 

(3.4) |AhfSh(t) IH-H <V , 0 ?2, uniformly in h 

(uniform analyticity). 

We shall also assume that the properties (3.1)-(3.4) hold for A*. 
Remark. If A is a selfadjoint strongly elliptic operator of order m with ap- 

propriate boundary conditions, then Ah defined by 

(3.5) (AhyhI Xh)H- (AYhI Xh)H VYh, XhE 7h 

complies with the requirements (3.3), (3.4) (see [9]). Similarly, if A is coercive in the 
norm of .9(A1/2), which is the case in the parabolic situation, then Ah defined by 
(3.5) also satisfies (3.3) and (3.4). 

An equivalent version of (3.4) is that there exist a, b > 0, C > 0 such that 

(3.4') p(Ah) D X {X;ReX > a - bImtXI) 

and 

|R (X,Ah)|| ( +I uniformly in h. 

Let y(t) be the solution of (1.2). The approximate schemes we shall consider are as 
follows: Find Yh(t) E Vh such that 

((Yh(T) Vh)H= -(Ahyh(t), Vh)H +(u(t) B*A*Qvh)U 

(3.6) for every Vh E Vh 

1Yh (0) = 0. 

Let e(t) y(t) - Yh(t). The following theorem gives the error estimates for the 
error function e in the schemes defined above. 

THEOREM 3.1. 

(i) IeIl.P[OT; II] < Chm'l-Q)IUILP[OT;U] for I < p < x, 
(ii) Jej IIP[OT. H] < C[ln hhm(l -1Q) + hm(1- Q+E)]IUI LP[OT. U] forp = 1, x. 
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Remark. The convergence results obtained in Theorem 3.1 are optimal. In fact, in 
view of the optimal regularity of the solution y, with u E Lp[OT; H], 1 < p < oo, 
we have that y E Lp[OT; .@(Al-Q)]. Thus, the estimate in part (i) essentially 
reproduces the approximation property (3.0) (with a = (1 - Q)). Similarly, for 
p = 1, so the maximal regularity of the solution is y E Lp[OT; .(A1-Q--)]. This 
fact is reflected by the presence of the In h term in part (ii) of the theorem. 

4. Proof of Theorem 3.1. In the proof of Theorem 3.1 the key role will be played in 
the following "rough data" estimates. 

THEOREM 4.1. ([9], [10]). Let Ah, A* satisfy (3.3) and (3.4). Then 

(4.1) ~~~~~~CTh l (4.1) ISh*(t)Ph - PhS(t) 1H-1H < /h , 0 < 1 1, 

(4.2) ||R(X, A) - R(X, Ah)Ph OH-4H < Chm for all X E 2. 

Theorem 4.1 implies the following 

COROLLARY 4.1. IAS(t) -AhSh(t)PhIIHH f -< Ch Mt2. 

Proof. With x E D(A) we have 

[AS(t) - AhSh(t)Ph]x = f extX[R(X, A) - R(X, Ah)Ph]xdX, 

where F denotes the contour of S. Hence, in view of (4.2), 

|AS(t) -AhSh(t)Ph1H OH < Chmf eRe XtIXIdX. 

Straightforward evaluation of the last integral now yields the desired bound. E 
Remark. In the special case when A represents a selfadjoint (resp. slightly 

nonselfadjoint) second-order strongly elliptic operator, (4.1) in Theorem 4.1 was 
proved in [3] (resp. [7] and [19] and [13]). In [9] this result was extended to a more 
general case of analytic semigroups with "uniformly analytic" generator Ah. This is 
the case, for example, for an arbitrary strongly elliptic operator where the bilinear 
form (Ahy Xh )H is coercive in the D(A'/2)-topology. 

We shall start by proving the "easy" part of Theorem 3.1, i.e., part (ii). 
With Lh: L2[OT; U] -* L2[OT; Uh] given by 

(Lhu)(t) f Sh(t-)Ph(AQBu(T)) dT, 
0 

we observe that (3.6) is equivalent to yh(t) = (Lhu)(t). Thus, 

(4.3) e(t) = (L - Lh)(u)(t). 

By taking adjoints L* and L* to L and Lh (with respect to L2[OT; U] L2[OT; H] 
topology) we obtain 

(L*f)(t) = f B*A*QS*(T - t)f(T) dT 

and 

(L*fh)(t) = f B*A*QS*(T - t)fh('T) dT. 
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Notice that in view of duality, part (ii) of Theorem 3.1 is equivalent to the following 
estimate 

I(L* - L*Phf ) |L [OT; U] 

< C[ln hhm(l Q) + hm(l Qe)I If Lp[OT; I] for p = 1, x. 

We start by proving (4.4) with p = xc. To this end, let us write 

(L* - L*Phf)(t) = e*'(t) + e2(t), 

where 

er(t) = B*A*Q(I - P)T S*( - t)f(T) dT, 

e*(t) = B*A*QJT [PhS*(T - t) - (T- t)PhI f((T) dr. 

Consider first t < T -h2m 

|e*(t) Pu < B*A*Q(I - Ph) S+h *( -t)f (T) dT 
U 

+ B*A*Q(I - Ph)jT S *(T - t)f(T) dT 

Applying to the first term (3.1') with a = 1 - E, and (3.1) to the second term, yields 
the further bounds 

Ch-mQhm(lE) t+fh 2 A*('lE)S*(T - t)f((T) dT 

+Ch-mQhm /h 2 A*S * - t)f (T) dT 

(by analyticity of the semigroup S(t)) 

1 f(1 -Q)f L[OT;H 
(T - t 

+Chm(,_Q) T 1 dTI f IL. O;I] 
+h2 h(T -t) 

Thus, for each t such that t < T - h2m we have 

(4.5)~~~ 1 e( t) l u < C [ hm( ) In h + h m (l -Q +E)] ] L[T j 

Similarly, for t> T - h2, we have 

1e*(t)|u< B*A*Q(I- Ph) 
T S *(T- t)f(T) d 

(by (3.1') applied with a = 1 - E) 

< Chh- mQm('-0 ) TA*1-ES*(T - t)f(T) dT 
H 

(4.6) < Chm(1 Q)h | E dTj f IL[OT H] 
IT-h 2 (T - t)edfIO 

<. Chm(1-Q+,)If IL.cJOT;HI. 
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Thus, (4.5) and (4.6) give 

(4.7) e1 |LO[OT;U] < C[hm(1 -Q)lnh + hm(l-Q+E)]IfIL[OTHI- 

Similar analysis applies to the term e2*(t). In fact, by (3.2) we have 

e2(t) | Ch QfT PS*(T - t) - Sh*(T - t) IH HdTIf ILO[OT; H] 

Thus, for t < T -hm, 

|e*(t) |,, S Chm t+^ hm-E dT 4 JT h dT 

where in the first integral we have applied (4.1) with 1 = 1 - E and in the second 
with 1 = 1. Hence, for t < T- h-M 

(4.8) |e*(t) |u < Chm(lQ)lnhIfL.[OT;H]. 
For t > T - h t, we obtain similarly as before 

(4.9) 2e *(t) |u < Ch m( Q)If I L[OT; H]. 

(4.8), (4.9), and (4.7) together yield 

(4.10) e *(t) + e *(t) |u < C [h m( Q)ln h + hm(l Q? f L[OT; H] 
which completes the proof of (4.4) for p = x. Now, we consider case p = 1: 

L T e*(t) I udt < j B*A*Q(I - Ph)S *(- t)f (T) I u dt dT 

< jh | I B*A*Q(I - Ph)S*(T -t)f(r) judtdT 

+ "T -h + J |B*A*Q(I - Ph)S*(T - t)f (T) |udtdT 

< Ch-mQ+m(1-?)f j TA*'-'S*(T - t)fi(T) lHdtdT 

+ChmQ+mjT fThh | A*1 ?S*(( - t)f (T) |HdtdT 

+ Ch mQ m( ') T 2 A*' S*(T - t)f(T) IHdtdT, 

where in the last inequality (4.11) we have used (3.1') applied with a = 1 - E to the 
first and third integral, and (3.1) to the second. From the analyticity of S*(t) it now 
follows that 

lo lel*(t) Judi 

S Chm(1-Q)h mefh j dt If(T) IHdT 

(4.12) J dt 

+Chm(1_Q)fT j-h2m' dt If(r)Id 
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Hence, 

(4.13) fT lee(t)Iudt < C[hm('Q)llnh + hm(1-Q+e)] 
IfIL, 

To show that the estimate (4.13) also holds for e*(t), we follow the same line of 
arguments as before. The only difference now is that instead of using (3.1') we use 
(3.2) combined with (4.1), applied with 1 = 1 - e and 1 = 1 (see also the proof of 
(4.9)). The proof of (4.4) is thus completed. 

Proceeding with the proof of Theorem 3.1 we shall now prove part (i). To 
accomplish this we shall need the following dual formulations of the assumptions 
(3.1) and (3.2). 

COROLLARY 4.2. (i) IA-1(I - Ph)AQBuIH < Chm(l Q)IUIU, 
(ii) I PhAQBul H < Ch - mQ~I l u 

To continue with the proof of our Theorem 3.1 we write 

e(t) = (L - Lh)U(t) = t (S(t - T) - Sh(t- T))Ph(AQBu()) dT 

(4.14) t Del(t) 
+ t 

AS(t- T)A-1(I -Ph)(AQBu)(T) dT. 

?=e2(t) 

To estimate the term e2(t), we use Corollary 2.2 with Q = 1 and B = I. This yields 

I e2 (t) |L,[OT; H] <- CTIA (I - Ph)AQBu|Lp[OT; H] 

(by Corollary 4.2(i)) 

(4.15) - CThm(l -Q) A -AQ ILp(OT; CThm(l -Q)I u ILp[OT; U]. 

Thus, in order to complete the proof, it is enough to show that the same estimate 
holds for el(t) = (Ehu)(t), where we introduced the notation 

(4.16) (Ehu)(t) -| [S(t - T) -S(t- )]Ph[AQBU(T)] dT. 

We shall prove 

LEMMA 4.3. 

I EhU IBMO[OT; H] < CThm(l)I'UIL([OT; U]. 

LEMMA 4.4. 

I Ehu uI f[OT H] < CThm(1IQ)UIL[OT. UC 

Once Lemmas 4.3 and 4.4 are proved, the result of part (i) of Theorem 3.1 follows 
immediately by interpolating the results of Lemmas 4.3 and 4.4 (see [18]). In fact, we 
obtain 

I EhU lLP[OT: H] < CT, phm(l -I U ILP[OT; H]' 

which together with (4.15) and (4.14) gives 

I e (t) IKL[OT; H] < CTPhm( )I u ILp[OT; H] P 1, o. 
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Thus, to complete the proof of the theorem, it is enough to establish the validity of 
Lemmas 4.3 and 4.4. 

Proof of Lemma 4.3. We apply Theorem 2.3 with 

Kh(t)_ ([S(t) - Sh(t)]Ph[AQBuI, t > 0, 
0 , t <0. 

Clearly, for h > 0, Kh e?? 2(U L1[OT; H]), and with u E L1[0T; U] and u(t) = 0, 
t < 0, we have 

(Ehu)(t) = Kh* U. 

In order to apply Theorem 2.3 we need to verify that (2.4) and (2.5) are valid. To see 
this, let us compute 

Kh(X)u = [R(X, A) - R(X, Ah)] Ph(AQBu) 

= [R(X, A) - R(X, Ah)PhI Ph(AQBu).. 
Hence, 

I k( )uIH J |R(X, A) - R(X, Ah)PhIH -HIPh(AQBu) IH 
by (4.2) 

< ChmIPh(AQBu)IH 

(by part (ii) of Corollary 4.2) 

Chmfl -ZQ)J uj 

Thus, 

(4.17) IKh(X)Iu H Chm(1Q 

Next, we establish the validity of (2.5). In fact, 

Kh(x-y)u - K(x)u = [S(x -y) -S(x)] Ph(AQBu) 

(Sh(x -y) - Sh(x))Ph(AQBu) 

(by the semigroup property) 

= J| AS(T)Ph(AQBu) dT - AhSh(T))Ph(AQBu) dr 

- 
J 

AS(T)- AhSh(T) IPh(AQBu) dT. 

Thus, in view of Corollary 4.1 we have 

IKh(x- y)u - Kx(x)(u) |H < Cf 2 dThmPh(AQBu) 

(by Corollary 4.2(ii)) 

(4.18) 1C _1hm(1-?)jUjU. 

Therefore (with y > 0), 

f | I|K(x - y) - K(x) IU--ndx H Chm (Q) (x1 _y 1 )dx 
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The same argument gives an estimate for y < 0. Thus, (4.17), (4.19) and Theorem 
2.3 yield 

I Kh * U IBMO[OT. H] < CThm(l) I U IL[OT U] 

which completes the proof of Lemma 4.3. E 
Proof of Lemma 4.4. The proof of this lemma relies on the application of 

Schwartz's Theorem 2.4. All we need to check is the validity of (2.11), with Kh(t) 
defined as above. The computations, in fact, are also very similar to those before. Set 
a = 2 in Theorem 2.4. Then, as in (4.18), 

h ̂(A-(X Y)) Kh(X) IIU-H A C 1 _ 1 | 

(first with x > 0) 

f IKh(A(X - y)) - Kh (Ax) 1U UHdx 
I> 2 

(4.20) =| IK(A (x - y)) -Kh (lX) lU- H dX 

AX-Y X Y A 4 

Similar computations apply to the case x < 0. Thus, (4.20) and Theorem 3.2 imply 
that 

IIKh* UIILU[OT HJ 
L 

Chm lUI [OT U]' 

which is precisely the statement of Lemma 4.4. EJ 
The proof of Theorem 3.1 is now completed. 

5. Applications to Parabolic Boundary Value Problems. The purpose of this section 
is to show how the abstract approximation result formulated in Theorem 3.1 can be 
applied to yield the optimal rate of convergence of Galerkin approximation to 
parabolic problems with "rough" (i.e., Lp(L2)) Dirichlet boundary data. To begin 
with, let Q be a bounded domain in R' with a smooth boundary 1. Let A(x, a) 
denote a uniformly strongly elliptic operator 

A (x, ~- ? aijai(x) ~j+ ?a, (x) a + a of W)' 

where 
n n fl 

??aij(x)tjtj > a ? t2, a > 09 

i=1 j=1 i=1 

for all x E Q, and all coefficients are assumed to be in C?(52). Consider the 
following parabolic equation: 

(ay (X, t)_ 

I aYt' -) = A(x, a)y(x, t), 
(5.1) y(0) =0, 
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In order to express the solution of the parabolic problem (5.1) as a singular integral 
(as in Section 3), we introduce an operator A: L2(0) -* L2(Q2) defined by 

-Ay A(x,a)y, yE E (A 
where 

9(A)= {ye L2(2); Ay E L2(Q); Y r = O} 

It is well known that -A generates an analytic semigroup S(t) on L2(21). Let us now 
define the "Dirichlet" map D: L2(r) -+ L2(Q), where 

(5.2) A(xa)Dg = 0, 
Dg~r =0. 

It is well known [14] that 

(5.3) D: HS(r) Hs+l/2(Q2) is bounded for all real s. 

An abstract version of (5.1) can now be expressed by the following formula (see [2], 
[11]): 

(5.4) y(t) AS(t - T) Du(T) dT. 

Knowing that 

9(A") = H2a(g), 0 < a < 1/4, [6], 

we have 

D: D E Y (L2(F) -- 9(A1/4-e)) for every E > 0. 

Therefore, (5.4) can be rewritten equivalently as 

(5.5) y(t) = f A374-,S(t - T)A114--Du(T) dT. 

Thus, we are now exactly in the situation described in Section 1, with H L2(0), 
U L2(r), B A114-PD E -.(L2(r) -- L2(2)], Q = 3/4 + E and m = 2. 

In order to formulate an approximating scheme for (5.1) (or equivalently (5.5)), we 
introduce finite-dimensional subspaces Vh c ??(D*A*). 

Since 

D*A*v = a (see [2], [12]), 

clearly H3/2+?(2) C .9 (D*A*). 
Remark. Linear splines, although they are not in H3/2+e(Q), still belong to 

g(D*A*). This fact will be used in the sequel. 
Using the identifications [6] 

.9(AQ) = .(A*Q) = H02Q(U), 0 < Q < 3/4, 

Q(A) = ?i(A*) = Ho1(Q) n H2(g2), 

and 

IXID(AP) I CIIXII2fi for x E D(AP), 

one can easily check that (3.0)-(3.2) with Q = Q are equivalent to the well-known 
approximation properties of spaces of linear (and higher-order) splines defined on 
uniform meshes. 
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As an approximation Ah of A we take an arbitrary operator A*: Vh -- Vh such 
that 

(5.6) f jj(A-l - Ah-1Rh)X || < Ch211X 1, 

h8V || 1 | < C|| A fVh 11, 0 < ,8 1/2, 
and 

(5.7) |(AhUh, Vh) I < CII Uh 11111Vh 111 (AhUh, Uh) >, 711 Uh 1. 

It was shown in [9] and [7] that most of the well-known approximations Ah to elliptic 
problems comply with (5.6) and (5.7). For instance, the standard Galerkin method, 
where 

(5.8) (Ahuh,, Vh) (A(xa)u( , V*) VUV, eV 

satisfies all the desired properties (5.6) and (5.7). Also, Babuska's method [1] and 
Nitsche's method [16] of approximating Ah (which, in fact, do not require subspaces 
Vh to satisfy zero boundary conditions) can be used. 

It was also shown in [9] that with Ah satisfying (5.6) and (5.7), the corresponding 
semigroup Sh(t) is uniformly analytic, i.e., 

II A hh( ) | ||x||uniformly in h . 

Consequently, the following "rough" data estimates hold [9]: 

(5.9) Cl(a~hP -2111) XI 11 , < 1|X| < 1 

(5.10) II(R(X, Ah)Ph - R(X, A))x Ch2IIXII, X e M. 

Remark. Estimates (5.9) were also proved in [7], [19], and [13] for the case where 
ai, = aj1(x) in the definition of A(x, a). 

Thus, we are exactly in the situation described in Section 3, where approximation 
assumptions (3.3) and (3.4) were satisfied with m = 2. The algorithm for computing 
the approximation of y takes the form: 

Find Yh,(t) E Vh such that 

(5.11) ( (p(t), vU)= (Ahyh(t), vQ) + Ku(t), D*A*V,)r, 

( Yh(0) = 0, allyV E VE= . 

Noticing that (see [12], [2]) 

(5.12) D*A*v= a a A 

where a/aqA = aij(x)nj(x)a/axj and ni are the components of the outward unit 
vector normal to the boundary r, we can rewrite (5.11) as 

(5.11') ( ,(t) ) = -( Ah h (t) 'h) a U(() anAh I' y,, O=O. 

Remark. If one takes for Ah a standard Galerkin approximation (see (5.8)) then 
(5.11') becomes 

(Uh~t), W = -(A(xa)yh(t),Vh)G + (U(t), a all h e V,,. 
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Remark. One should note that (5.11) does not require the elements of Vh to be 
conformal (as long as Ah is appropriately defined on nonconformal subspaces). 

Applying the result of Theorem 3.1 to our scheme (5.11), and taking Q = Q in 
(3.1) and (3.2), yields the following error estimates, 

(5.13) e(t) |L [OT;L2( 2)] - CTh /2 IUILP[OT; L2(r)] 1 <P < 00 

with e(t)-y(t)-yh(t), where y(t) (resp. yM(t)) is the solution of (5.1) (resp. 
(5.11)). Note that the error estimates (5.13) are nonoptimal (modulo he). In fact, 
parabolic theory provides us with the following regularity results 

(5.14) (for u E Lp[OT; L2(F)] we have ( 
y E 

pL 
OT Hl/2(2)] 

p-<,x0 
y E= P [T;H12-E2) 9p = 1,oo0. 

Therefore, the optimal rate of convergence for e(t) should be ?P(h1/2) for 1 < p < x. 
The nonoptimality of the estimate (5.13) is the result of a nonoptimal identification 
of B with Al/4-ED (we cannot take E = 0!). On the other hand, it is known that 
R(D) C H1/2(Q) (but not in .(A1/4)!). We will be able to improve the estimate 
(5.13), by imposing slightly stronger requirements on approximation properties of 
Vh. More precisely we have the following result. 

THEOREM 5.1. Let Vh C H1(Q) be such that 

(a) liV - PhVls5 <Cha-sllv la, 0 < a < 2, 0 < s < 1, a-s > 0, 

(b) V(Phv-v) | Ch'12ll v 112, 
(5.15) ____ 

(c) |aqA | Ch312 
k 

|| h1 

(d)ttt v (Phv - v) < Ch II v II(2a+3?+e)/2, 0 < a < 1/2. 

Let y(y) be the solution of (5.1) ((5.11)). Then, with e(t) y(t) -y(t), we have 
(i) Ie(t)I Lp[OT, L2()] < Ch12 IU I LP[OT; L2(r)]' 1 <p < 00X 

(ii) Ie(t)IL [OTL2(s)]Q Ch< lnhju IL,[OT; L2(r)]' P = 1, 00. 

Remarks. 1. In view of the regularity of the solution y(l) E Lp[OT; H1/2(Q)] for 
boundary data u E Lp[OT; L2(r)], as described by u(t) (5.14), we deduce that the 
results of Theorem 5.1 are optimal; indeed they reproduce the approximation 
property (5.15)(a) with a = 1/2 and s = 0. 

2. Spaces which comply with (5.15) are, for example, linear (or higher-order) 
splines defined on uniform meshes (see also [16]). 

The proof of Theorem 5.1 follows immediately from Theorem 3.1 after taking 
Q = 3/4, Q = 3/4 + e and making use of assumptions (b), (c) and (d). In fact, 
(5.15)(b), (c), (d) readily imply that 

(b') I D*A*(Rhv - v) Ir < Ch112IvI 112 < Ch1/2I V ID(A*) for v E D(A*) 

t1t If VI, c H 3/2+F(0), then (5.15)(d) follows automatically from the Trace Theorem and (5.15) (a), (b). 
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and 

(c') ID*A*v Ir < ChI3"'2I Vh 11, 

(d') D*A*(Rhv -V) I < Chall V II(2a+3+e)/2 0 < a < 1/2. 

Thus, assumptions (3.1), (3.2), and (3.1') are satisfied with Q = 3/4, Q = 3/4 + E. 

6. Concluding Remarks. The same technique can be used to approximate para- 
bolic equations with different types of boundary conditions. For instance, in 
the case of Neumann boundary conditions we simply replace the operator D by 
N E Y(L2(r) -* H3/2(g)), where N is an appropriate "Neumann" extension. In 
this case the optimal rate of convergence is ((h3/2), which reflects the optimal 
regularity of the solution. In order to obtain the convergence results for the 
Neumann problem with H-1(P) boundary data (see (1.14)), we simply invoke 
Theorem 3.1 with Q= Q= 3/4, which gives us immediately the error estimates 
(1.14). 
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